
,  a program of the Pacific Institute  
2039 Kala Bagai Way     Suite 402     Berkeley, California 94704     (510) 644-2700     gmorris@emf.net 

 

 

August 31, 2022 
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To: Andie Biggs 

 Office of Energy Infrastructure Safety 

From: Gregg Morris and Zoë Harrold 

 

 

Informal Comments of the Green Power Institute on the Wildfire Risk Modeling 

Working Group  

 

Green Power Institute (GPI) representatives joined the Risk Modeling Working Group in 

July 2022 and attended the July 13 and August 10, 2022 meetings.  These meetings 

covered the topics of Modeling Algorithms, Components, Linkages, Interdependencies, 

and Climate Change.  We provide the following comments in response to the August 17, 

2022 email from Andie Biggs, OEIS, seeking comments on lessons learned, future 

modeling improvements, and meeting topics. 

 

Our comments generally address topics and recommendations from the perspective of 

how modelling methods and reporting effect applications for wildfire mitigation planning 

and implementation.  

 

We include the following lessons learned that correlate to recommendations for future 

areas of improvement: 

 

• Establish a wildfire risk mitigation planning target, for example a 1-in-10-year 

wildfire risk event planning threshold, or other metric that can guide wildfire risk 

planning models. 

• Machine learning PoI planning models may result in biased outputs.  An 

assessment of result bias is warranted to address the potential for risk mitigation 

blind spots.  

• Evaluate existing and alternative consequence quantification approaches and 

whether longer fire spread simulations are necessary. 
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• Ingress and egress risk evaluation methods may overlook important factors 

limiting evacuation rate. 

• Flattened risk scores mask the overlap of risk from multiple risk drivers such as 

layered lower (e.g. CFO-animal) and higher (e.g. CFO-vegetation) frequency risk 

drivers.  This removal of information presents challenges for assessing how 

modeling methods influence granular risk scores and inform risk mitigation. 

• Utilities are in the process of determining risk model uncertainty at the individual 

variable level, though progress at each utility is not transparent. 

 

1. Any key lessons learned from previous meetings, including identification of 

meeting topic area (attached is the schedule of topics for reference), as 

applicable 

 

1.1  Establish a wildfire risk mitigation planning target, for example a 1-in-10-year 

wildfire risk event planning threshold, or other metric that can guide wildfire risk 

planning models. 

 

The August 10, 2022, discussion raised important issues regarding wildfire risk modeling 

and the methods and assumptions applied for driver specific PoI and Consequence 

metrics.  We appreciate comments from J. Mitchell, S. Savage, and the utility modelers, 

which drove the discussion.  The following assumptions in wildfire risk planning models 

came under scrutiny: 

 

a) Averaging the wildfire consequence at each asset node (i.e. the MAVF transformation 

of Technosylva wildfire spread models) for all simulations run, versus other 

method(s) (e.g. median, kernel density estimation). 

 

b) Whether PoI risk drivers are, and should be, treated as independent versus dependent 

variables relative to the wildfire consequence they are multiplied by. 

 

These assumptions lead back to a foundational question mentioned during the meeting – 

what level of wildfire risk should the grid be designed for?  That is, what planning 

standard will guide wildfire risk modeling and therefore risk mitigation planning and 

implementation.  GPI believes this question is foundational to guiding the next phase of 

wildfire mitigation planning, including with respect to (a) and (b) following. 

 



a) Wildfire Consequence: Granular ignition consequence constitutes a Poisson 

distribution of independent, MAVF derived consequence values determined based on 

each of many (n) fire spread simulations performed at the location of each asset.  The 

IOUs are averaging these MAVF-based wildfire consequence values to arrive at a single 

consequence value at the location of each utility asset.  Concern was raised regarding 

whether averaging was appropriate.  Averaging assumes that the observations have a 

normal distribution and may not be suitable for skewed distributions, where using the 

median is more appropriate for summarizing the most probable outcome.  It also 

eliminates information on the distribution tails, especially since the IOUs are not 

providing any summary statistics on skewness or distribution.  Averaging also assumes 

that fire spread consequence distributions are unimodal versus multi-modal (e.g. versus 

bi-modal) at each asset.  Based on available data it is not clear whether granular wildfire 

spread model-based and MAVF converted consequence values have approximately 

normal, skewed, or multi-model distributions or what the width of the distributions are.  

As such it is possible that using the average is not the optimal representation of 

consequence at each asset. 

 

Liberty uses a kernel density estimation for wildfire consequence at each asset.  The 

degree of smoothing is unknown, as well as whether and how they convert the smoothed 

distribution into a single granular consequence value and resultant risk score.  GPI has 

previously raised concerns that Liberty appears to perform a variable number of wildfire 

simulations (n) at each asset location, which may raise issues in terms of comparability 

between locations (GPI comments on 2022 SMJU Draft WMPs, June 20, 2022). 

 

The IOU’s intention to account for model uncertainty by running many wildfire spread 

simulations based on a defined set of worst weather days and averaging the resultant 

consequences appears to be generally well intentioned and on track.  However, it is also 

true that the way in which a singular consequence value is determined at each asset from 

the distribution of wildfire spread simulation outputs is important both in terms of 

mathematical appropriateness as well as for risk mitigation implications.  For example, 

taking the average of a skewed consequence profile may overestimate or underestimate 



consequence depending on whether it is right of left skewed; a possibility since wildfire 

spread simulations are stopped at 8 hours and can have zero spread. 

 

Establishing a best practice for how or even if a consequence distribution should be 

converted into a single consequence value is important for estimating granular risk.  More 

importantly the selected method can affect the wildfire mitigation planning standard.  For 

example, taking the average, median, or 95th percentile consequence score will result in 

very different risk scores at each asset, and could potentially result in very different risk 

maps.  From a planning and application standpoint, the definition of a planning standard 

is therefore important for guiding how consequence and overall risk is mathematically 

defined.  

 

Depending on the risk mitigation/planning threshold, the average or even median 

consequence risk may not be the optimal consequence value.  If the planning threshold is 

for a 1-in-10-year wildfire consequence, or some other definition such as the mere 

possibility of a catastrophic wildfire whether in a 10 year or 100 year timeframe, then it 

may be more appropriate to utilize alternative consequence values (e.g. max, percentile, 

etc.) and/or a range of values to define confidence intervals.  Alternatively, is it necessary 

to avoid condensing consequence probability curves into a single value altogether and 

instead use the consequence distribution in a Monte Carlo simulation?  This discussion 

also begs the question of how accurate and precise the final risk value needs to be and the 

trade-offs in terms of strategic and timely risk mapping and mitigation, computational 

power and feasibility, or other factors. 

 

b) Risk driver PoI and consequence as independent versus dependent variables – The 

IOU planning models assume that PoI risk and consequence are independent variables.  

This effectively quantifies “maximum” possible risk for a given ignition in a specific 

location, regardless of driver and in the absence of quantitative correlations between 

ignition drivers and specific weather patterns (e.g. FPI).  This approach, while perhaps 

not capturing an accurate snapshot of risk at the present time, does function to avoid 

potential underestimation of risk by quantifying something that approximates maximum 

potential risk.  That is, utilities are treating all risk events as though they are low or high 



PoI risk x high ignition consequence (i.e. Figure 1 below, top row), versus accurately 

modeling the dependence of ignitions from each risk driver with the most likely wildfire 

consequence of that ignition (Figure 1). 

 

Figure 1 Generalized schematic of PoI and consequence dependencies 
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Comments by J. Miller and S. Savage raise concerns that the current approach 

overestimates wildfire risk from drivers such as contact from object (CFO) - animal 

ignitions and other ignition drivers that may not be linked to/caused by high-risk wildfire 

conditions (i.e. are independent); and that this over-estimation dilutes higher-risk PoI 

drivers such as line-slap, and CFO-vegetation risk that are linked to windy and high risk 

FPI conditions, such that PoI and consequence are dependent variables.  Mitchell’s 

analysis suggests that pooled ignition and wildfire data across the state allowed for a 

more statistically robust assessment of the evolution of an ignition into a major or 

catastrophic wildfire associated with each ignition risk driver.  Results showed 

significance for wind-linked risk drivers causing catastrophic wildfires.  However, he 

notes that these analyses are still limited by small datasets. 

 

The core issue is whether PoI and consequence should be treated as independent or 

dependent variables, or put another way if models should make a determination that are 

risk drivers and consequence are linked by correlation versus causation.  There is, 

however, nuance in this assessment.  For example, the issue was raised that CFO-animal 

drivers may be decoupled from high-risk FPI conditions, but that this does not mean that 

CFO-animal caused ignitions cannot or will not occur concurrent with high risk FPI 

conditions.  Utility representatives also stated that PoI drivers such as line slap can 



happen under a range of conditions, not just high FPI conditions.  Liberty stated that their 

risk models couple PoI risk drivers with FPI conditions as dependent variables.  

However, they are simply not modeling risk from drivers such as CFO-animals and other 

ignition drivers that are considered independent of their wildfire spread simulation 

conditions.  Leaving out ignition risk drivers is a questionable practice, and it should be 

taken into consideration in interpreting the results. 

 

It is also important to note the limitations of utilities’ machine learning PoI risk models.  

Utilities stated that covariate selection is not designed to eliminate model bias or even 

determine “truth” in terms of underlying risk drivers (e.g. root cause analysis), but rather 

it is developed to maximize granular ignition predictive power based on training and test 

data subsets.  Based on some insights into the model covariates these ML models have 

many “levers” that include everything from equipment age to power flow conditions/ 

pulses, as well as local weather and climate patters (e.g. wind).  The important point here 

is that it is not entirely clear whether there are sufficient studies/insights at this time to 

quantify the degree of PoI and consequence dependence for all risk drivers, and whether 

some risk drivers occur entirely independent or dependent of high-risk wildfire 

conditions. 

 

GPI appreciates all comments from the utilities and stakeholders during the August 10, 

2022, Risk Modeling Working Group meeting and finds merit in all of the concerns 

regarding data adequacy and modeling approach.  We add that these considerations all 

raise the root question of whether risk modeling can or even should reflect precise current 

day risk versus maximum possible risk, or if they should be calibrated to another risk 

planning threshold entirely. 

 

Current Risk Planning Threshold – A wildfire risk mitigation planning vision was 

established by the Wildfire Safety Division (WSD) in the Utility Wildfire Mitigation 

Strategy and Roadmap for the Wildfire Safety Division (WSD Roadmap, 2020).  The 

WSD vision states: 

 
The proposed activities in this report provide the foundation to achieve a new long-term 

vision for the WSD and the utility sector:  



 

A sustainable California, with no catastrophic utility- related wildfires, that has access to 

safe, affordable, and reliable electricity. 

 

This is a bold and aspirational vision, that is used for the purposes of this strategy and not 

meant at this time to be used to enforce penalties or interpret statute, but rather to give the 

WSD and utilities something to strive towards together and to set a high bar for the WSD 

and utilities to re-imagine a different future for California…. 

 

For the purpose of this strategy only, “catastrophic” refers to any fire in California that 

meets one or more of following criteria, which are derived from California’s historic 

deadly and destructive fires.  The criteria are: 

 

Public Safety Directly causes one or more deaths  

Property Damages or destroys over 500 structures  

Natural Resources Burns over 140,000 acres of land (WSD Roadmap, 2020) 

 

Notably the WSD 2020 Roadmap specifically refers to this planning benchmark as a 

vision and that it is not to be used to enforce penalties or interpret statute.  As the 

intended target for utilities to strive for, one could argue that the current risk models are 

aligning to this vision by assuming an approximation of maximum consequence risk for 

all potential ignitions regardless of ignition driver.  That is, utility models are currently 

designed to include lower frequency, or less probable, catastrophic wildfire risk drivers.  

 

There is a hierarchical planning gap that includes the lack of an established, top-down 

risk planning expectation other than what is in the WSD high-level vision.  This gap is 

reflected in risk modeling methods, and closing this gap begins with establishing a risk 

mitigation planning target.  An example of an energy sector risk mitigation planning 

target is the Resource Adequacy Planning Reserve Margin (RA PRM).  The CPUC 

established a 1-in-10-year outage event risk mitigation target and calibrated the RA PRM 

to this target – meaning the 15 percent RA PRM is expected to provide sufficient 

capacity to prevent outages until and unless a greater than 1-in-10-year event occurs, 

under which conditions widespread outages of a defined extent and duration would be 

expected to occur.  

 



Applying this concept to wildfire mitigation planning opens many questions: Should risk 

modeling guide mitigations that address a 1-in-10-year catastrophic wildfire event, a 1-in-

100-year event?  If so, does that threshold include, for example, CFO-animal ignitions 

coincident with high FPI conditions.  What would the intended and unintended outcomes 

be of weighting wildfire consequence values that are multiplied by potentially 

independent PoI drivers, and what threshold of risk planning would this establish for 

wildfire mitigation at each utility?  How is it standardized?  Is there adequate data to 

determine PoI and consequence dependence, event probability, or overall risk scores at a 

high level of precision?  What can we learn from existing electric sector risk planning 

metrics, established by the CPUC and implemented by the utilities, that can inform 

wildfire risk planning targets. 

 

It remains the case that wildfire mitigation is expensive and that wildfire mitigations take 

time to implement.  The purpose of the risk mitigation models is to inform strategic and 

granular mitigations that reduce costs and target the highest risk locations first in support 

of more rapid risk buydown.  Establishing one or multiple risk planning targets could 

guide risk model design that will in turn affect mitigation selection.  For example, a target 

of modeling, planning for, and mitigating a 1-in-100-year catastrophic wildfire event 

would warrant multiplying low frequency PoI events with lower probability, higher 

wildfire consequence outcomes.  The outcome of such a model may include more 

expansive “high-priority” risk areas and/or alter the risk score range across a utilities’ 

territory.  While at the other end of the planning spectrum a 1-in-2-year wildfire planning 

target might focus risk modeling on more frequent PoI drivers and average consequence 

values.  Given the current need for substantive mitigations across much of the HFTD, it 

may even be prudent to establish multiple planning targets that guide phased near-, mid-, 

and long-term mitigations based in high-, medium-, and lower-probability wildfire risk.  

Establishing risk planning metrics can also help align risk models and modeling 

approaches across utilities. 

 

A risk planning target will also guide RSE and mitigation valuation by way of risk 

modeling outputs.  For example, the RA PRM effectively establishes that the benefits of 

planning for a 1-in-10-year outage event is worth the cost of the resultant 15 percent 



over-procurement requirement.  In the wildfire risk planning context, a 1-in-100-year 

catastrophic wildfire risk planning target and resultant model output might affect RSE 

scores across large swaths of the HFTD that quantitatively justify undergrounding over 

covered conductor. 

 

While GPI does not advocate for a specific wildfire risk planning target at this time, or 

even the form of that target (e.g. a 1-in-n-year event, consequence threshold, etc), we do 

recommend that the final RMWG report advocate that the OEIS or CPUC establish a 

quantitative risk planning target through a process that includes ample opportunity for 

stakeholder comment.  It may be prudent to address this in a working group meeting to 

discuss possible options for a quantitative risk planning target.  Defining this planning 

target will in turn guide risk modeling and risk mitigations – similar to how a standard 

reliability requirement and metric is used to assess the adequacy of systemwide resource 

portfolio modeling and determine the RA PRM of 15 percent. 

 

1.2 Machine learning PoI planning models may result in biased outputs.  An assessment 

of result bias is warranted to mitigate the potential for risk mitigation blind spots. 

 

All models have errors, so it is to be expected that utilities ML PoI risk planning models 

are not entirely accurate when it comes to predicting where and what caused known 

ignitions in the test data set (30 percent), after the model is developed using the training 

data subset (70 percent).  In the July 13, 2022, meeting the utilities reported that the 

model development process used approaches: (i) to intentionally introduce bias, (ii) that 

could unintentionally create bias, and (iii) to reduce bias.  They further noted that some 

approaches used to “create better models that may introduce bias” include optimization to 

increase model predictive capabilities and that these approaches are not intended to 

determine “truth.” GPI sees no specific issue with these potential model bias factors, but 

rather raises the concern that unchecked, unintentional bias in the output predictions 

could produce model blind spots or other biases that could influence risk mitigation 

planning and implementation. 

 

In the October 5-6, 2021, risk modeling workshop GPI suggested that the Utilities 

develop and provide an assessment of ignition prediction bias, including ignitions that are 



not predicted by the PoI ML models (i.e. planning models).  To date it does not appear 

that the utilities using machine learning models have a process to periodically assess 

whether the output predictions are biased, what those biases are, how they might mitigate 

them, or minimally how they will account for the bias in the process of implementing 

risk-informed mitigation plans.  Utilities’ modelling methods and documentation should 

include an assessment of what ML model biases might look like and establish a process 

for periodic bias assessment that documents known biases.  This process should be 

iterative to continuously build an understanding of what ML derived PoI risk bias can and 

does constitute, how it changes with each model version, and how model bias should be 

taken into account in risk-informed mitigation decision making. 

 

Notably, the focus on predictive power versus “truth” should also remind us that the ML 

models may not provide optimal insights into risk driver thresholds or causes.  For 

example, maximum operating wind speeds for different conductor types, the age 

threshold at which point an asset should be preemptively replaced to mitigate risk, or why 

a given area is particularly prone to CFO-animals.  While the predictive power of PoI ML 

models based on variable selection may facilitate cause and effect studies, the bias in 

these models may not accurately inform root causes of ignitions.  The utilities should 

continue to study and identify ignition risk factors and root causes on their systems, 

seperate from ML modelling. 

 

1.3 Evaluate existing and alternative consequence quantification approaches and 

whether longer fire spread simulations are necessary. 

 

An issue raised by MGRA in their comments on the 2021 WMPs is that the 8 hour 

wildfire spread simulations may underestimate wildfire risk in more remote areas where 

ignitions can lead to large and even catastrophic wildfires that traverse substantial 

distances and can ultimately encroach on WUIs that are not proximal to the point of 

ignition.  Discussions regarding the duration of wildfire spread simulations are 

reoccurring in WMP comments.  

 

At the risk modeling working group meeting the utilities essentially noted that simulation 

uncertainty increases with longer simulation durations.  This is expected, but it does not 



necessary answer whether longer duration simulations are needed or are useful.  It may 

be prudent to require utilities to complete a study on how simulation duration and the 

number of simulations alters MAVF converted consequence values such as the skewness 

and spread of the resulting distribution, as well as the resulting risk scores and risk in 

proximity to WUI.  For example, run a set number of simulations (n) each for a variety of 

durations (e.g. 8, 12, 24 hours) at a selection of locations with different conditions (e.g. 

weather, vegetation).  In general, one would assume that longer fire spread simulations 

would increase consequence risk scores and potentially increase or alter consequence 

distributions both at a given asset as well as across a service area.  

 

However, there remain many challenges to approximating real-world wildfires with 

simulations.  For example, catastrophic wildfires can burn for many days before they are 

full contained and the impacts of suppression are not built into fire spread models.  To 

our understanding, result validation is additionally challenging for longer simulations due 

in part to fire suppression efforts affecting actual wildfire fire-spread data.  Based on 

these factors and the anticipated increase in uncertainty it is fair to question whether 

longer-duration, fire-spread simulations are the best way to evaluate granular ignition 

consequence risk.  

 

We appreciate questions posed by Holly Wherman of CalAdvocates regarding the 

availability of other metrics, such as flame length, from the 8-hour simulations.  While 

we are not experts in wildfire spread dynamics or modeling, we also wonder whether 

these other metrics, in addition to MAVF-derived consequence values, might improve 

granular consequence values based on the existing 8-hour simulations.  For example, 

could alternative metrics such as flame length and spread rate also inform the potential 

for a given simulation outcome to further develop into a major wildfire? Could these 

simulated wildfire properties inform an estimated efficacy of suppression? 

 

We also postulate that consequence values that do not take into account simulated fire 

properties such as spread rate and flame length may simply be missing important factors 

that determine ignition consequence past the 8-hour simulations.  For example, suppose 

two simulated match-drop fires originating from the same location cover somewhat 



different areas but still pass-through locations with the same structures (Fig. 1).  Both 

fires may have similar consequence scores based on the MAVF methods for valuing land, 

structures, and population (e.g. lives > structures > land).  However, if the fire properties 

in the blue simulation are more aggressive (e.g. longer flame length and faster spread 

rate), the potential for this fire to cause substantial additional damage and become a 

catastrophic wildfire could be greater.  A limiting factor for appropriately assessing 

wildfire consequence potential could be linked in part to consequences based solely on 

the MAVF versus taking into account wildfire properties. 

 

Figure 2 Example of two simulated match-drop fires (red and blue) that may have 

similar consequence scores depending on the MAVF conversion functions, but might 

have different potential to become catastrophic fires due to their properties such as 

flame length. 

 

 
 

GPI recommends that utilities: (1) Report on whether MAVF derived consequence scores 

from 8-hour wildfire spread simulations are able to adequately inform the 8+ hour 

destructive potential of each simulation based in variability in simulated fire properties, 

or if MAVF scoring is unintentionally narrowing or flattening the distribution of 

consequence risk at a given location; and (2) Work with CalFire and other fire spread and 

suppression experts to evaluate if and how other wildfire simulation output parameters 

can inform granular 8+ hour wildfire spread and consequence risk based on fire 

properties.  The proposed match-drop simulation study above could compliment these 

assessments by informing how both fire properties and consequence values evolve over 

longer duration simulations, prior to implementing longer match-drop simulations across 

the entirely of California. 

 



GPI also remains concerned about whether and how utilities are accounting for 

consequence associated with developed areas designated as “unburnable” in the wildfire 

simulation models.  It may be reasonable to revisit wildfire simulation consequence 

scores in conjunction with planned wildfire suppression modeling discussions. 

 

1.4 Ingress and egress risk evaluation methods may overlook important factors limiting 

evacuation rate. 

 

Based on SCE’s initial summary of methods we are concerned that using the metric of 

population density per road miles may overlook the importance of egress/ingress bottle 

neck points and the ratio of these bottle necks to population density and overall road 

miles.  For example, the attendance to square foot ratio in a theater will not change 

whether there are 1 or 2 exits, however the evacuation rate will.  Dense city centers may 

have a much higher population to roadway ratio compared to communities in the WUI.  

However, these cities may have many exits via highways and thoroughfares while small 

WUI communities constrained by parklands and terrain features (e.g. peaks and valley 

walls) may have very few egress/ingress pathways.  For example, in one reported 

instance “Debris blocked a road that serves as a single exit for a community, and 

residents had to be helicoptered to safety (2017 Northern California Wildfires).1” 

 

Utilities should provide a summary of how their methods take into account existing 

studies on wildfire evacuation, and how they are similar and different from existing 

methods.  For example, the publication Mapping wildfire evacuation vulnerability in the 

western US: the limits of infrastructure, by Thomas J. Cova, David M. Theobald, John B. 

Norman III, and Laura K. Siebeneck. 

 

Utilities should also discuss how their analyses and assessments take into account 

community evacuation plans within their territories.  For example, with respect to 

community evacuation plans, one report cites that “officials implemented contraflow on 

the Pacific Coast Highway to increase capacity and ease congestion [during the 2018 



Woolsey Fire].1”  Evacuation plans such as these could be in place and feasible in some 

locations and not in others. 

 

1.5 Flattened risk scores mask the overlap of risk from multiple risk drivers such as 

layered lower (e.g. CFO-animal) and higher (e.g. CFO-vegetation) frequency risk 

drivers.  This removal of information presents challenges for assessing how modeling 

methods influence granular risk scores and inform risk mitigation. 

 

By flattening risk scores from all drivers into a single risk value and risk map it is not 

possible to determine relationships (e.g. correlations) between different risk drivers.  For 

example, whether planned mitigation locations are in fact substantially altered by CFO-

animal caused wildfire risk or if these risks are coincident with locations characterized by 

high vegetation (e.g. forested lands) that would be targeted for mitigation due to CFO-

vegetation ignition drivers.  While not a technical aspect of the model methodology, the 

format in which the model outputs are presented can either facilitate or limit stakeholder 

evaluation of model changes and resultant outcomes as well as how the outcome is used 

to inform mitigations.  We also raise the issue that ongoing developments to the wildfire 

risk models and the need for external review will likely extend beyond the scope of what 

can be accomplished during the Risk Modeling Working Group.  

 

GPI advocates for improved transparency into risk modeling outputs, including access to 

layered interactive maps with model version control.  These maps will help stakeholders 

and parties to the Risk Modeling Working Group evaluate the impacts of changes to 

modeling assumptions and inputs on granular risk scores, as well as the implications of 

these models for mitigation prioritization and approach.  

 

1.6 Utilities are in the process of determining risk model uncertainty at the individual 

variable level, though progress at each utility is not transparent. 

 

We focus our discussion on utility Machine Learning (ML) probability of ignition (PoI) 

or likelihood of risk event (LoRE) planning models.  In terms of model assessment 

prioritization GPI is at this time generally less concerned with the development of 

 
1 Review of California Wildfire Evacuations from 2017 to 2019 (2020), Wong, Stephen D., Broader, 

Jacquelyn C., Shaheen, Susan A., PhD 

 



Technosylva fires spread models and operations models that include weather forecasting 

models.  While this prioritization should not exempt these models and the model 

inputs/assumptions from review, we take into account factors such as uniform adoption 

of Technosylva and more mature weather forecasting models.  This is in contrast to the 

newness and variability of ML PoI models and their influence on wildfire risk modeling 

for the purpose of mitigation planning. 

 

GPI appreciates insight from the utilities during the July 13 meeting regarding progress 

on assessing model uncertainty.  The utilities report that model uncertainty assessment is 

at the individual variable level and challenges to determining variable uncertainty include 

identifying the basis for validation, such as SME input, data, or data quality.  It is not 

apparent how far along each utility is towards assessing covariate uncertainty in their ML 

PoI planning models, nor to what degree they are able to rank those variables from largest 

to least influential uncertainty on the model output as a whole.  There is also likely 

substantial model sensitivity to factors such as specific covariate selection, covariate 

definitions, and other modelling assumptions.  This assessment is based on the instability 

in PG&Es risk ranking model, informed by large changes to risk scores and ranks in their 

2022 WMP Revision Notice Response.  The stability of SCE’s and SDG&E’s PoI models 

is relatively unknown, although they have not specifically reported large shifts in their 

model-derived, circuit-risk rankings. 

 

At this time stakeholders do not have a window into the specific covariates the utilities 

are employing in ML PoI planning models, nor the data sources and definitions for those 

covariates.  For example, a covariate such as maximum wind speed at the time of an 

outage would minimally require selecting a dataset that was available at the time of the 

outage, a subset of the data from a location proximal to the outage (e.g. interpolated 

between weather stations or at a nearby weather station), and a specified window of time 

from which the max windspeed is selected.  This single covariate includes a specific data 

set and multiple assumptions, each of which can introduce uncertainty and bias prior to 

even defining the algorithms that link the covariate to the training dataset to produce the 

output prediction.  Insight into risk driver PoI covariates will help stakeholders assess 

high-level similarities and differences between the utility PoI planning models such as 



available data inputs, granularity, and quality (e.g. tree height, species, vegetation 

density, clearance, equipment age, condition, max versus average wind speed, etc.). 

 

The 2022 WMPs provided tables of input data sets and sources of uncertainty.  However, 

these tables did not inform how the data are interpreted to generate model covariates and 

the uncertainty lists and assessments were incomplete.  GPI supports additional 

transparency into the utility ML PoI planning model covariates.  Utilities should provide 

a list of covariates for each modeled risk driver including the underlying dataset and 

covariate definition (e.g. max wind speed is determined at +/- 1 hour from the time of an 

outage from the closest available weather station, which has 10 m data interval).  This list 

should be updated for each new model version as needed.  Utilities should also provide a 

summary of which covariates have the most predictive power, and which are anticipated 

to result in the most model uncertainty.  Utilities should also provide a plan for how they 

will begin to address uncertainty at the covariate level. 

 

2. Ideas and areas for future modeling improvements you think should be included 

in the risk model guidance document, including prioritization based on 

importance. 

 

We suggest including the following areas relating to future modelling improvements in 

the risk model guidance document.  These are roughly ranked based on prioritization and 

correspond to lessons learned in (1) above:  

 

2.1. Establish a wildfire risk mitigation planning target, for example a 1-in-10-year 

wildfire risk event planning threshold, or other metric that can guide wildfire risk 

planning models. 

 

2.2. Machine learning PoI planning models may result in biased outputs.  An 

assessment of result bias is warranted to mitigate the potential for risk mitigation 

blind spots. 

 

2.3. Evaluate existing and alternative consequence quantification approaches and/or 

whether longer fire spread simulations are necessary is an area of need. 

 



2.4. Ingress and egress risk assessment methods should include a summary on how 

they leveraged existing evacuation rate and challenge assessments, how their 

methods are similar and different from these existing methods, how they validate 

and verify their models, and how they take into account community evacuation 

plans. 

 

2.5. Provide recommendations on PoI, consequence, and total modeled risk result 

reporting format in order to facilitate the risk model and application external-

review process.  For example, reporting flattened risk scores mask the overlap of 

risk from multiple risk drivers such as lower (e.g. CFO-animal) and higher (e.g. 

CFO-vegetation) frequency risk drivers.  GPI recommends providing access to the 

layered risk maps via a data portal to improve transparency and external review. 

 

3. Possible topics you want to be covered in the second round of meetings (current 

tabled items include egress/ingress, smoke impacts, and suppression impacts) 

 

GPI supports these currently tabled topics for the future round of meetings.  We also 

recommend discussing the following topics: 

 

3.1. Wildfire risk planning target.  Is a planning target needed and if so, what form 

should or could a planning target take? 

 

3.2.  Risk modeling reporting standards.  While this does not address the nuts and 

bolts of model development, reporting methods and results is foundational to the 

review process.  This will guide recommendations to the OEIS regarding the 

types of risk modeling results and formats needed to appropriately review model 

updates and the influence of those updates on output predictions. 

 

3.3. Ingress/egress.  We look forward to additional discussion on how the utilities are 

modeling or accounting for risk associated with ingress and egress points. 

 

3.4. SMJU risk models.  While the SMJUs engage in the risk modeling meetings their 

wildfire risk planning models often do not compare with the IOU risk models in 

terms of method, scope, or maturity.  Furthermore, the evaluation of SMJU 



wildfire risk modelling approaches is generally overshadowed by discussions 

focused on IOU modeling.  A future meeting should focus on SMJU risk 

modeling methods for quantifying PoI and consequence risk components.  

 

Components that raise concern are comments suggesting that ML PoI output predictions 

and consequence values are considered dependent.  This appears to be at least partially 

due to the lack of ignition risk modeling for risk drivers such as CFO-animals, and other 

potentially non-weather-related outage and ignition causes.  PacifiCorp also stated that 

they did not have a data scientist currently on their staff, suggesting risk modeling 

advancement may be paused. 

 

The risk modeling working group should take care to not inadvertently overlook the 

SMJUs based on the perception of size.  These smaller utilities still oversee substantial 

customer accounts in HFTD Tier 3 regions.  PacifiCorp serves a large contiguous service 

area that spans from California and into Oregon.  This large service area, as well as 

service areas in Utah, Washington, Idaho, and Wyoming, suggests PacifiCorp may have 

larger relevant datasets and staffing capabilities than just its California territory and 

customer-base might imply.  The perception of fewer ignitions and utility wildfires in 

SMJU service areas in general is an artifact of relatively low frequency ignition rates and 

ever rarer wildfire occurrences integrated across smaller regions.  Statistically speaking 

the SMJUs are just as prone to wildfire risk as the IOUs.  

 

 

Respectfully Submitted, 

 
Gregg Morris 

Director, GPI 

 

 


